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The application of matrix methods to periodic Mathieu equations is discussed, and 
it is shown that accurate solutions may be found for any real value of the parameter, 
including the asymptotic case. 

I. INTRODUCTION 

The Mathieu differential equation, which may be written 

(d2JqdX2) i (A - 2q cos 2x) y = 0 (1) 

with boundary conditions, 

and 
y’(0) = y’(7r) = 0, (2b) 

is of importance in several fields of physics, especially in quantum mechanics where 
it is the prototype of the wave equation for any system with a periodic potential. 
However it has long been recognized that the numerical solution of Eq. (1) can 
become difficult for large values of q because the zeros of the eigenfunctions 
condense about &n/2 as q + co. Previous attempts to find numerical solutions 
for large values of q (greater than about 200) have recently been reviewed by Canosa 
[l], who has suggested a new method that is capable of finding both accurate 
eigenvalues and eigenfunctions over the domain 0 - T for q up to 104. 

In this paper we wish to point out that it is possible using conventional matrix 
methods to rapidly solve the Mathieu equation for q = 0 to q = IO4 with accuracy 
which is sufficient for most problems of physical interest. Second, we will develop 
a practical matrix method for which no upper limit on q exists. These results are 
to be contrasted particularly with the method of Canosa and Oliveira [2] and with 
similar methods described in Ref. [l]. 

606 
Copyright 0 1973 by Academic Press, Inc. 
Ail rights of reproduction in any form reserved. 



MATRIX SOLUTION OF MATHIEU EQUATIONS 607 

II. GENERAL MATRIX METHOD 

Matrix solutions of Sturm-Liouville problems have been discussed by several 
authors, such as in a recent review of Schwartz [3]. Briefly the method involves 
finding the matrix elements of the differential operator L of the form 

(n / L j m) = 1 z,Lz, dx, 

where z is any complete orthonormal set of functions and the integration is carried 
out over the entire domain x of the operator. Then if a unitary transformation 
matrix T is found such that the matrix T’LT is diagonal, these diagonal elements 
will be the eigenvalues of L and the columns of T will be the coefficients of an 
expansion of the eigenfunctions in terms of the set z. 

The choice of basis functions is governed by three requirements. The first is that 
the set be complete. In those cases where it is necessary to truncate an infinite set, 
the convergence of the matrix solution is assured by the Ritz variational condition 
so long as all of the first n functions are included. The Ritz condition states that with 
increasing number of basis functions the calculated eigenvalues must monotonically 
approach the true eigenvalues from above. The eigenfunctions will then be a 
least-squares fit to the true eigenfunctions although they need not converge at a 
given point. The second requirement is that methods be available for the evaluation 
of the matrix elements. The practical considerations of computer time, storage, 
and round-off error establish the third requirement that the basis set be as close 
to the eigenfunctions as possible. 

III. APPLICATION TO THE MATHIEU EQUATION 

The exact solutions of the Mathieu equation in the limits of very large and small q 
are well known. These form convenient basis sets for intermediate values of q. 
For q = 0 the eigenfunctions yn are the circular functions (25--112 exp(inx) and 
A, = n2 for all positive and negative integers n including zero. In the limit q + co 
the yn occur in degenerate pairs given by 

Y?%(X) = 2-1'2vn(~ - 7m ZtMx + 7dm (3) 

for all positive integers n including zero. Heref,(x) are the linear oscillator functions 

&(x) = [(y/rr)1~2(1/2~n!)]1~2 H,(~l/~x) exp(--yx2/2), 

where H, is the nth Hermite polynomial and y = 2q112. The + and - in Eq. (3) 
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correspond to solutions satisfying boundary conditions (2b) and (2a), respectively, 
and h, = -2q + (2n + 1) y. For intermediate values of q it may be shown that 
yn must be small and monotonically decreasing for all x not within some value 
en of &n/2, where 19, is approximately [(2n + l)/r]‘l”. This is the reason for the 
difficulty encountered by previous methods in finding accurate eigenfunctions for 
large values of q. 

The matrix elements of the Mathieu equation in the circular function basis are 
simply 

(n I L I m> = n2&m - qkmrt2, (4) 

where 8 is the Kronecker delta function. This matrix may be factored by symmetry 
into four tridiagonal blocks and each block diagonalized separately. The matrix 
elements in the linear oscillator basis may be found by the method of Harris et al. 
[4] using the relations 

(n I 9 I m> = (n + $1 ~,,,/y + VyY 

x {Kn + l)(n + 2>1’/” k.m-2 + Mn - 1)l”” Lm+d, (54 
and 

(n I d2/dx2 I m> = -(n + $1 yh,, + (y/2) 

x Nn + I)@ + W’” km-2 + b(n - 1)l”” Lni21. (5b) 
Both of these matrices may be factored by symmetry into two tridiagonal blocks. 

Goldstein [5] has shown that for large but finite q the differences between the two 
eigenfunctions given in the limit of infinite q by Eq. (3), and also between the 
corresponding eigenvalues, decrease as q (212+3)/4 exp( -2y). This difference is too 
small to be calculated by matrix methods for any q greater than about 200, so for 
these problems the basis functionsf,(x i 7r/2) may be used with no loss of accuracy. 

The eigenvalues of the tridiagonal matrices may be found extremely efficiently 
by the variation of the method of Sturm sequences proposed by Ortega [6] and the 
eigenvectors if desired may be found by the method described by Wilkinson [7]. 
The final diagonalization in the linear oscillator basis was found to be performed 
most efficiently by the Givens method [8]. 

The rate of convergence of the eigenvalues found using both sets of basis 
functions is shown in Table I, which gives the minimum total number of basis 
functions needed for convergence of the first five even and odd eigenvalues to ten 
significant figures as a function of q. Additional eigenvalues to the same accuracy 
would require a correspondingly larger basis set. The first several eigenfunctions 
near &r/2 were found to converge at approximately the same rate. In Tables II 
and III are given explicitly the eigenvalues and eigenfunctions for q = IO4 and 
compared to the corresponding results given in [2]. All computations were per- 
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TABLE I 

Minimum Number of Circular and Linear Oscillator Basic Functions Required 
for Convergence of First 10 Eigenvalues of Mathieu’s Equation to 10 Places 

as a Function of q 

4 

No. basis functions 

Linear 
Circular oscillator 

1 21 ;, 100 
10” 57 24 
104 165 12 
106 > 300 10 

TABLE II 

First 5 Even and Odd Eigenvalues of Mathieu’s Equation, q =i104 

n Present work Canosa” 

1 - 19800.25031 - 19800.2501 
2 -19401.25283 -19401.2525 
3 -19003.26104 - 19003.2607 
4 - 18606.27878 - 18606.2785 
5 -18210.30995 - 18210.3096 

a Reference [2]. 

TABLE III 

First and Fifth Mathieu Functions, q = 10” 
The Notation is 1.5 - 5 = 1.5 x lO-5 

x in deg 

90 
80 
60 
40 
20 
0 

n=l 

Present work Canosa” 

2.8233577 2.823358 
0.13578192 0.1357819 
6.645919-12 6.744600-12 
5.3355774-32 2.927357-31 
1.3829003-62 2.432940-57 
6.0-104 1.1058289-86 

n=5 

Present work 
_- 

+ 1.7223490 
+2.1458405 
+ 1.5462453-g 
$4.4429854-28 
+ 1.5243986-58 

7.0-100 

Canosaa 

1.722358 
2.145843 
1.690215-g 
6.987092-27 
2.988643-52 
5.6992583-81 

a Reference [2]. 
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formed on the UCSB IBM 360/75 computer with double precision words (64 bits). 
The computation of the first five solutions to the accuracy shown in Tables II and 
III required 0.9 set of computer time. This may be compared to Canosa’s results, 
which required 8 min to execute on an IBM 360/91. However, as will be discussed 
in the next section, the matrix method does not yield accurate eigenfunctions in the 
region where they are negligibly small. None of the computations shown in 
Table I showed round-off error beyond the final digit. 

V. DISCUSSION 

Tables I-III show that matrix solutions of Eq. (1) with both large and small 4 
are at least as accurate as the results given in [2] except for the eigenfunctions 
between 60 and 0 degrees. As noted in [2] approximate formulas are known for the 
eigenfunctions in this region that improve in accuracy with increasing q. Moreover 
the solutions of most physical problems do not depend critically on the value of 
the eigenfunctions where they are negligibly small. In quantum mechanical appli- 
cations, for example, it is clear that the matrix elements of even an operator that 
depends more strongly on the eigenfunctions near zero than near 7r/2 may still be 
well approximated by using a matrix solution. 

The properties of matrix solutions discussed above can be directly generalized 
to the solution of any eigenproblem of the form 

d2y/dx2 + [A - V(x)] y = 0, (6) 

where V(x) is a periodic function of x. In the circular function basis this requires 
expanding V(X) in a Fourier series and using the matrix elements 

(n 1 dz/dx2 I m) = IZ~&,~, (W 

(n I cm kx I m> = bL,,~, , (7b) 

(n I sin kx I m> = (1td.3 %,,,A. (7c) 

The method of Harris et al. [4] may be used to find the matrix elements in the 
linear oscillator basis either from an analytic expression for V(x) or by interpolation 
from discrete points such as from a table or graph. We conclude that matrix 
methods are suitable for the solution of eigenproblems of the form of Eq. (6) 
including problems that are asymptotic in the sense used in [l]. 

The matrix method described in this paper is similar in concept to one recently 
discussed by Canosa [9]. In this method V(x) is expanded in a power series in X, the 
matrix elements of the series are evaluated in a linear oscillator basis and the 
eigenvalues and eigenvectors are obtained by the approximate diagonalization of 
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the matrix representation of Eq. (6) by second order perturbation theory. It should 
be noted, however, that although our method is subject to some of the limitations 
discussed in [9], the evaluation of V(x) by the technique given in [4] is far more 
accurate than using a truncated power series approximation. In addition, the exact 
diagonalization of the resulting matrix is equivalent to employing infinite rather 
than second order perturbation theory. As a consequence, the matrix method is 
applicable over a wider range of values of 4 or for a wider variety of functional 
forms for V(X). In fact, the method gives good results even in those cases where 
V(x) is not a continuous function of x and hence not expressable as a power 
series in x [4]. 
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